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A three-band model containing the essential physics of transition-metal oxides with partially filled t2g shells
is solved in the single-site dynamical mean-field approximation, using the full rotationally invariant Slater-
Kanamori interactions. We compute the metal-Mott insulator phase diagram in the space of chemical potential
and interaction strength, determine the response of the different phases to perturbations which break the orbital
symmetry, and establish the regimes in which an orbital selective Mott phase occurs. The results are compared
to data on titanates, ruthenates, vanadates, and C60.
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I. INTRODUCTION

The physics of strong �electronic� correlations plays a
central role in modern-day condensed-matter physics.1,2 The
essence of this problem is the competition between the re-
pulsive interactions felt by electrons in transition-metal d
orbitals or lanthanide/actinide f orbitals and the itinerancy
arising from hybridization with other orbitals in the material.
For an atom in free space, the d and f shells have, respec-
tively, a five- and sevenfold orbital degeneracy and when the
orbitals are partially filled, Coulomb interaction effects lead
to a complicated multiplet structure. In a solid-state environ-
ment the orbital degeneracy may be fully or partially lifted.
In some cases, for example, the cuprate high-temperature
superconductors,2 the degeneracy is fully lifted and the low-
energy physics may be described by the one-band Hubbard
model in which the multiplet structure is trivial.3,4 However,
for many materials of interest, including, for example, the
�La /Ca�TiO3 series, the SrVOx materials, the �Sr /Ca�RuO3
compounds and their Ruddlesden-Popper variants, the new
Fe-based superconductors and the AnC60 series of materials,
as well as essentially all interesting lanthanide/actinide com-
pounds, the orbital degeneracy is not fully lifted and non-
trivial multiplet effects are expected to be important. Of par-
ticular interest is the effect of orbital degeneracy on the Mott
metal-insulator transition. It is generally believed5 that the
critical interaction strength required to drive a metal-
insulator transition depends on the orbital degeneracy, being
larger for systems with several degenerate orbitals than it is
for one-orbital models. This gives rise to the physics of or-
bital selectivity, whereby a broken orbital symmetry, either
spontaneous or induced by crystal symmetry, may drive
some orbitals into insulating states. This phenomenon has,
for example, been argued to be of crucial importance in un-
derstanding the insulating phase of LiTiO3 �Ref. 6� and of
the metal-insulator transition in Ca2RuO4.7,8

The dynamical mean-field theory �DMFT� provides a
nonperturbative method to study the interplay between cor-
relation effects and electron banding and has in particular
produced insights into the correlation-driven �Mott� metal-
insulator transition in the one-orbital model.9 While the issue
of the Mott transition in multiorbital systems has been ad-

dressed by various techniques,10–12 a comprehensive picture
has not emerged, in part, because of the theoretical difficul-
ties associated with the treatment of the various Hund and
pair hopping terms required for a realistic treatment of par-
tially filled d orbitals. Dynamical mean-field theory maps a
lattice problem onto a quantum impurity model �a finite-size
system coupled to a noninteracting bath of electrons� plus a
self-consistency condition. For systems in which the orbital
degeneracy is fully lifted the quantum impurity model is a
variant of the one-orbital “Anderson impurity model,” for
which powerful numerical techniques have been known for
many years.13–17 However, these techniques encounter diffi-
culties when applied to materials with partially filled degen-
erate d orbitals, where the on-site interaction includes both
spin exchange and “pair hopping” terms. The Hirsch-Fye
method, which has been the standard approach for multior-
bital models with density-density interactions, relies on a
Hubbard-Stratonovich transformation of the interaction term.
In the orbitally degenerate case the multiplicity of interac-
tions requires many auxiliary fields, which become difficult
to sample. Rotational invariance becomes very difficult to
preserve and a severe sign problem is reported.18 The prolif-
eration of states also creates difficulties for exact diagonal-
ization methods, although recent progress has been made
along this line.11,12

In this paper we exploit a recently developed19,20 impurity
solver which is free from the defects of the other methods. In
this method the on-site Hamiltonian is solved exactly, and
the coupling to the bath is treated by a perturbation expan-
sion which is sampled stochastically via an importance-
sampling procedure. The method allows a detailed and accu-
rate treatment of thermodynamic quantities and �via
analytical continuation� of dynamics, down to temperatures
on the order of 0.1-1% of the basic energy scales of the
problem. An additional benefit of the method is that it pro-
vides information about which configurations of the corre-
lated site make the dominant contributions to the partition
function. While the computational effort of our method
scales exponentially with the number of orbitals, it can easily
handle three orbitals on desktop machines and five orbitals
on larger clusters.

We use the method to analyze the “three-orbital” model
which is relevant to materials such as LaTiO3, SrVO3, and
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SrRuO3, where the physics is dominated by electrons in the
transition-metal t2g orbitals. The model is also relevant to
electron- doped C60, where the three orbitals correspond to
the triplet of lowest unoccupied molecular orbital �LUMO�
states of C60. We determine the metal-insulator phase dia-
gram, study the response to perturbations which lift the or-
bital degeneracy, and determine the orbital selectivity of the
doped Mott insulating state. We provide a general phase dia-
gram on which different materials may be located, clarify the
basic energetics and possible types of behavior, and provide
information relating to orbitally selective Mott transitions.
Our work builds on our previous investigation of a “two-
orbital” model21 relevant to systems with eg symmetry. In the
two-orbital case, in the presence of strong Hund coupling,
one has either a one-electron state or a filled �spin-polarized�
shell. The new feature of the three-orbital model is the case
n=2, where one can have a multielectron state with high
local spin alignment but a partially filled shell.

II. FORMALISM

We study a model involving three orbitals �labeled by
a=1,2 ,3�, with Hamiltonian

H = �
k,a,b,�

�k
abdk,a,�

† dk,b,� − �
i,a,�

�� − �a�ni,a,� + �
i

Hint
i .

�1�

Here i labels sites in a lattice and k labels a wave vector in
the first Brillouin zone, ni,a,�=di,a,�

† di,a,� is the density of
electrons of spin � in orbital a on site i, � is the chemical
potential, �a is a level shift for orbital a arising from a ligand
field splitting, and �k

ab is the band dispersion. For the follow-
ing analysis, the relevant property of the dispersion is the
density of states N��� given by ���dk� symbolizes an integral
over the appropriate Brillouin zone with the correct measure
factors�

Nab��� =� �dk���� − �k
ab� . �2�

We have assumed that the symmetry is such that the local
density of states is orbital diagonal and independent of a; this
assumption holds for pseudocubic materials such as the La
titanates and the “113” Sr/Ca ruthenates, as well as for
AnC60. We expect that the qualitative consequences of a sym-
metry breaking in the density of states are similar to those
obtained by considering an explicit crystal-field splitting �a.

For the interaction term we take the standard Slater-
Kanamori form �we have suppressed the site index�

Hint = �
a

Una,↑na,↓ + �
a�b,�

�U�na,�nb,−� + �U� − J�na,�nb,��

− �
a�b

J�da,↓
† db,↑

† db,↓da,↑ + db,↑
† db,↓

† da,↑da,↓ + H.c.� . �3�

Here U is the intraorbital and U� the interorbital Coulomb
interaction, while J is the coefficient of the Hund coupling
and pair-hopping terms. We adopt the conventional choice of
parameters, U�=U−2J, which follows from symmetry con-

siderations for d orbitals in free space and is also believed to
hold in solids. With this choice the Hamiltonian �3� is rota-
tionally invariant in orbital space. The chemical potential
required to obtain a given occupancy at fixed U decreases as
J is increased; for example, the condition for half filling is
�= 5

2U−5J. We shall focus on the case U�3J, in which
�loosely speaking� the U interaction controls the occupancy
and once the occupancy is fixed the J interactions then con-
trol the arrangement of the electrons among orbitals. For
U	3J the physics is different: the local level first maximizes
the spin and then adjusts the local occupancy accordingly.
We are not aware of materials for which this regime is rel-
evant.

We solve the model using the single-site dynamical mean-
field approximation,9 which neglects the momentum depen-
dence of the self-energy and reduces the original lattice prob-
lem to the self-consistent solution of a quantum impurity
model given by the Hamiltonian

HQI = − �
a,�

�� − �a�na,� + Hint + Hhyb + Hbath �4�

with

Hhyb = �
k,a,�

Vk,a,�da,�
† ck,a,� + H.c., �5�

Hbath = �
k,a,�

�a
bath�k�ck,a,�

† ck,a,�. �6�

The important quantity for the subsequent analysis is the
hybridization function �hyb

a,���� which depends on orbital a,
spin �, and frequency and whose imaginary part is

Im �hyb
a,���� =� �dk��Vk,a,��2�„� − �a

bath�k�… . �7�

In the computations presented here we take an orbital-
independent semicircular density of states with bandwidth 4t
�Bethe lattice�. The t2g bandwidths for early-stage transition-
metal oxide compounds are on the order of 3 eV, so that
t	0.75 eV.

The hybridization function is fixed by a self-consistency
condition9 involving the impurity model Green’s function
GQI, the self-energy 
QI of the quantum impurity model, and
the momentum integral of the Green’s function of the lattice
problem computed with 
QI,

Ga,�
latt�i�n� =� d�

Na���
i�n + � − � − 
a,�

QI �i�n�
. �8�

We note that insulating solutions may easily be distinguished
from metallic solution by the behavior of GQI���: for an in-
sulator at low T this quantity drops exponentially as � is
increased from 0 or decreased from �, while in a metallic
phase the constant Fermi-level density of states leads to a
slow power-law decay.

The simulations were performed using the continuous-
time quantum Monte Carlo �QMC� solver presented in Refs.
19 and 20, which samples a diagrammatic expansion of the
partition function in powers of the impurity-bath hybridiza-
tion Hhyb. We monitored the particle densities in each orbital,
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the Green’s functions and self-energies of the impurity
model, and the contributions of each eigenstate of Hloc
=Hint−
a,���−�a�na,� to the partition function. For a three-
orbital model the dimension of the Hilbert space of Hloc is
64, so the series is constructed in terms of traces of products
of 6464 matrices combined with determinants made up of
the hybridization function �hyb evaluated at different time
arguments. The bottleneck of the simulation is the trace com-
putation. To speed this up, it is important to group the eigen-
states of Hloc according to the conserved quantum numbers
as explained in Ref. 22. The matrix representation of the
operators d and d† then acquires a block structure, with
blocks of size �9. In this way, the simulation becomes effi-
cient enough to run on a desktop machine. Our results were
obtained using about 3–5 CPU h per iteration.

III. METAL-INSULATOR PHASE DIAGRAM: ORBITALLY
SYMMETRIC CASE

To map out the metal-insulator phase diagram we have
computed the dependence of density �typically represented
as a density per orbital per spin� as a function of chemical
potential for various interaction values. Figure 1 shows rep-
resentative results. For sufficiently negative � the solution
we find has density n=0 �“band insulator”�. As � is in-
creased, the density increases. For small U the increase is
smooth at all �, while at larger U plateaus occur at which the
density is fixed to the integer values n=1, 2 , 3 �so the den-
sity per orbital per spin is fixed to 1/6, 2/6, 3/6�. We identify
the regions in which n smoothly increases as metallic phases
and the plateaus as Mott insulating regions; we have con-
firmed these identifications by examination of GQI���. Metal-
lic �insulating� solutions are plotted with open �full� symbols.
At the U=12t value studied in Fig. 1 we see that for J / t=0
and 1, we have plateaus at each integer n, for J / t=2 only at

n=2,3, and for J / t=3 and 4 there is only a plateau at n=3.
From similar traces at various values of U and J we have
constructed metal-insulator phase diagrams in the plane of
chemical potential � and correlation strength U.

The upper panel of Fig. 2 shows the phase diagram for
J=0. We see that the critical U required to drive a Mott
transition depends weakly on density, ranging from U=6.5t
at n=1 to U=10t at n=3. Positions and widths �in �� of the
Mott lobes are only weakly dependent on band filling �at
U=16t the width is about 11t for all three lobes�. The lower
panel of Fig. 2 shows that the situation changes quite dra-
matically in the presence of a Hund coupling. The size of the
three-electron insulating lobe is substantially increased at the
expense of the two- and one-electron lobes. Furthermore, the
value of Uc2 for the half-filled insulating state is reduced
from 
10t to 
3t, while the two- and one-electron insulat-
ing lobes shift to higher values of U.
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FIG. 1. �Color online� Electron density n per orbital per spin
computed as a function of chemical potential � for different values
of the interaction parameter J at U / t=12 and temperature �t=50.
The orbital symmetry of the Hamiltonian is unbroken ��a=0� and
orbital and spin symmetries were enforced in the calculation. Pla-
teaus in n��� correspond to Mott insulating states. Open �full� sym-
bols correspond to metallic �insulating� solutions.
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FIG. 2. �Color online� Metal-insulator phase diagram presented
in the space of chemical potential � and interaction strength U
�measured in units of the quarter bandwidth t� for �a=0 and
�t=50 at Hund coupling J=0 �upper panel� and J=U /6 �lower
panel�. Orbital and spin symmetries were enforced in the calcula-
tion. Error bars are on the order of the symbol size. The numerals in
the lobes indicate the electron concentration per site in the insulat-
ing phases. In the lower panel the solid diamonds indicate the
boundary of a spin freezing transition discussed in Ref. 28, while
the line with squares plots the locus of � and U corresponding to
the density n=2.
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Insight into the physics of the metal-insulator phase
boundaries can be obtained by considering the atomic limit.
If En denotes the lowest eigenvalue of the n-particle sector of
Hloc, then an estimate of the Mott gap is

�Mott�n� = En+1 + En−1 − 2En. �9�

The actual Mott gap is reduced by an amount on the order of
the bandwidth �4t� while the critical U required to drive a
metal-insulator transition may be estimated by comparing the
strong coupling �Mott to the electronic kinetic energy
K=−�a,���dk��k�ck,a,�

† ck,a,��.
For J=0 the interaction term Hloc may be rewritten as

Hloc=UNtot�Ntot−1� /2, so Eq. �9� gives �Mott=U for all n.
The upper panel of Fig. 2 shows that at large U the width in
� is almost the same for the three Mott lobes, consistent with
this simple argument. Similarly the n dependence of the criti-
cal U is consistent with the n dependence of the noninteract-
ing kinetic energy K�n=1�
1.4t, K�n=2�
2.3t, and
K�n=3�
2.5t.

A nonzero J term changes the energetics. The
lowest-energy state is of maximal spin and we find
�Mott�1�=�Mott�2�=U−3J. However, for n=3, adding
a fourth electron requires flipping a spin, so that �Mott�3�
=U+4J. For J=U /6 as in the lower panel of Fig. 2 this
becomes �Mott�n=1,2�
U /2 and �Mott�3�
5U /3. These
considerations explain the comparable widths of the Mott
lobes for n=1,2 and the much larger width of the n=3 Mott
lobe. The variation of the critical U is more subtle. For
n=1,2 the transition occurs at a sufficiently strong correla-
tion that we may assume that each site is always in its maxi-
mal spin state, although our calculation is in the spin-
disordered phase, so the direction of the moments is random
from site to site. The noninteracting kinetic energy should
then be computed for fully spin polarized electrons and
should be reduced by a factor of 2 to account for the
double-exchange physics of spin-polarized electrons hopping
in a paramagnetic environment. These considerations give
K�n=1�
K�n=2�
0.8t; the reduced K and reduced U ac-
count for the shift of the critical U. For n=3, the situation is
different: as J becomes large, the constraint of total on-site
spin polarization means that no low-energy states are avail-
able for conduction: there is only virtual hopping and as in
the half-filled double exchange model one would have insu-
lating behavior driven by J only. This means that the kinetic
energy is very rapidly suppressed by a nonvanishing J, ex-
plaining the rapid shift in the phase boundary seen in Fig. 2
and in more detail in Fig. 3.

IV. LIFTING OF THE ORBITAL DEGENERACY:
METAL-INSULATOR PHASE DIAGRAM

AND MOTT INSULATING STATES

In this section we consider the consequences of an ex-
plicit breaking of the orbital symmetry of the model. We
focus mainly on J�0 and dopings between n=1 and n=3.
The cases of n=1 and n=3 are straightforward. At J�0, the
n=3 state is a filled shell, stable against orbital splitting for
small differences among �a, while for larger crystal-field
splitting a high-spin/low-spin transition will occur, with

physics analogous to that discussed in the two-orbital context
in Ref. 21. For n=1 the qualitative behavior is clear: the
model becomes either an effective one-orbital model or an
effective two-orbital model; the physics of these two cases
has been previously discussed.9,21 As an example we show in
Fig. 4 the evolution of the orbital occupancy under a “trigo-
nal” crystal-field splitting �1=� ,�2=0 ,�3=−� which sepa-
rates all three orbitals. We see that as the splitting is in-
creased one band becomes depopulated and then, at a higher
�, the second band empties out, leaving an orbitally polar-
ized Mott insulator. This behavior is consistent with the pro-
posal of Pavarini et al.,6 who argued that the insulating be-
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FIG. 3. Phase diagram in the plane of Slater-Kanamori param-
eters U and J calculated for the orbitally symmetric model
��a=0� at �t=50 and half filling �n=3�. The hashed region
�U	3J� corresponds to an effectively attractive Coulomb interac-
tion; this situation does not normally occur in transition-metal ox-
ides and is not considered here.
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FIG. 4. Orbital filling as a function of crystal-field splitting � in
the symmetric case: �1=−�, �2=0, and �3=�. The parameters are
U / t=7	Uc2, J /U=1 /6, and �t=50 and the density at �=0 corre-
sponds to one electron. As the crystal-field splitting is increased,
band 1 �which is raised� empties out and undergoes a metal-band
insulator transition near � / t
0.4. At the higher value �
0.8t the
second band empties out, leaving what is effectively a one-orbital
model for which U�Uc2, so the state is insulating.
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havior of the n=1 material LaTiO3 is due to a relatively
strong ligand field which splits the degeneracy of the three
orbitals.

We focus now on the case n=2, which is relevant, for
example, to SrRuO3 and the Ruddlesden-Popper materials
Srn+1RunO3n+1. In studying these cases our main focus is on
the simplest symmetry breaking, a cubic-tetragonal distortion
which splits the threefold degeneracy of the t2g state into a
singlet and a doublet. We parametrize this splitting by mov-
ing one orbital �which we take to be “orbital 1” by an energy
� while keeping the other two fixed, so �1=� and
�2=�3=0. There are two cases: either the doublet lies lower
than the singlet �“1 up, 2 down,” ��0� or the reverse �“1
down, 2 up,” �	0�. While we implement here the symmetry
breaking by shifting the orbital energies, other ways of
breaking the symmetry �e.g., choosing different bandwidths�
will have similar effects.

We begin by considering the large-U Mott insulating re-
gime. Figure 5 compares the metal-insulator phase boundary
computed for the orbitally symmetric model to the location
of the n=1,2 Mott lobes computed for a 1 up, 2 down crystal
field �1 of magnitude t. Magnetic and orbital orderings are
suppressed. Lifting the orbital degeneracy is seen to have a
very substantial effect on the n=2 Mott phase and a notice-
able but less dramatic effect on the n=1 Mott lobe. The
critical interaction strength needed to drive the two-electron
phase insulating is seen to be reduced to less than half of the
value found in the orbitally symmetric model. The width of
the two-electron insulating plateau is enhanced, but to a
lesser extent: the increase in the width is approximately �1.
Both positive �1 up, 2 down� and negative �1 down, 2 up�
crystal-field splittings stabilize the insulator, but the effect of
a positive �1 �which shifts band 1 up� is much larger. For
�1=−t �not shown� the end point of the two-electron lobe is
Uc2
9.7t. The difference occurs because if one level is

shifted up, the n=2-electron state effectively becomes a
filled shell which �as can be seen for the three-electron state
in Fig. 2� is particularly stable.

Figure 6 presents the response of the two-electron insulat-
ing state to crystal-field splitting for two values of J. In the
high-spin filled shell case of two electrons in two orbitals
studied in Ref. 21, the insulating state �for J�0� did not
respond at all to a weak crystal-field splitting. Here, because
at density n=2 the �a=0 state is not a filled shell, the two-
electron insulating state responds even to an infinitesimal
crystal-field splitting: the orbital susceptibility is nonvanish-
ing.

The value of the Hund coupling J has important effects on
the response to a crystal field. At J=0 �rightmost traces in
Fig. 6 there is no energetic barrier to placing two electrons in
the same orbital. If �1 is decreased ��−�1 increased� the
occupancy of band 1 increases to 1 per spin while the occu-
pancy of the other two bands decreases smoothly to zero. If
�1 is increased, the nondegenerate state empties out while
the occupancy of the two degenerate states remains equal
and approaches 1/2 per spin per orbital. If J�0 �left-hand
traces� the situation changes: at �a=0 the lowest-energy state
is spin triplet, so that as �1 is decreased only 1/2 electron per
spin can populate orbital 1, which leads to an average distri-
bution of �1/2,1/4,1/4�. For even larger �1 a high-spin/low-
spin transition will occur, but we do not consider this here.
Depending on the degree of band nesting, the states consid-
ered here may become unstable to orbital ordering. Magnetic
and orbital orderings will be discussed in a future paper.23
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FIG. 5. Effect of a 1 up, 2 down crystal-field splitting on the
two-electron insulating phase. Heavy black line: boundary of the
two-electron Mott insulating state in the space of interaction U and
chemical potential � computed for �1= t, J=U /6, and �t=50. The
crystal field splits the threefold degenerate level into a doublet and
a singlet, with the singlet lying higher. Dashed lines: metal-insulator
phase boundary for the same interaction parameters and �a=0 for
comparison.
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V. CRYSTAL FIELDS AND THE DOPED MOTT
INSULATOR

We now consider the behavior occurring as the n=2 Mott
insulator is doped in the presence of a nonvanishing crystal-
field splitting. The results presented in this section pertain to
an orbitally symmetric solution and may be changed if or-
bital order occurs. Our preliminary results are that, except
very close to the Mott insulating phase boundaries, the doped
states are stable against staggered orbital ordering.23

Representative data are shown in Fig. 7 which plots the
dependence of orbital occupancy on chemical potential for a
relatively small ���1�=0.25t, upper panel� and relatively large
���1�= t, lower panel� magnitude of the crystal-field splitting.
Results for both 1 down, 2 up �negative �1� and 1 up, 2
down �positive �1� crystal-field splittings are shown. The
chemical-potential range covers dopings from the n=1 to the
n=3 Mott insulating state. The interaction parameters J= t
and U=12t are such that the model is insulating at all three
of the integer fillings n=1,2 ,3.

To discuss the figure it is convenient to begin with the 1
down, 2 up, �1	0 case �circles and stars, red online� and to
discuss the behavior as the n=1 Mott insulating state found
at �	6t is doped. Although the orbital susceptibility of the
n=1 Mott insulating state is finite, even the weaker of the
two crystal-field splittings shown here is larger than the “or-
bital superexchange” and leads to complete orbital polariza-
tion. The favored orbital is fully occupied �density n=0.5 per
spin� and the disfavored orbitals are empty. Now consider
adding electrons to the 1 down, 2 up state. In the weak
crystal-field case �upper panel� we see that �within our reso-
lution� the doping-driven Mott transition out of the n=1 state
is first order: the orbital polarization drops dramatically upon
doping, so that in addition to adding electrons, doping leads
to a transfer of electrons from the highly occupied to the less
highly occupied orbital. The resulting “orbitally polarized
Fermi-liquid” state evolves smoothly upon doping to the ob-
vious two-electron Mott state, characterized by the expected
1/2,1/4,1/4 occupancy per spin. As electrons are added to this
two-electron state, we find a small orbitally selective Mott
region with band 1 still insulating but bands 2 and 3 metallic.
At larger chemical potential an insulator-metal transition
takes place in band 1, leading to an initial decrease in the
orbital polarization. This state evolves smoothly to the three-
electron orbitally symmetric state. Thus, for small crystal-
field splitting, “orbitally selective Mott behavior” only oc-
curs very close to the insulating concentrations. Consider
now the larger crystal-field splitting �lower panel�. In this
case the doped state is in the orbitally selective Mott phase:
at all chemical potentials the orbital favored by the crystal-
field splitting remains at the Mott occupancy of n=1 and the
carrier density varies only in the disfavored orbital, so that
one has effectively a model of two bands of carriers coupled
to a spin 1/2 arising from the filled orbital. Similar effects
were also noticed recently by Liebsch24 in a study of
La1−xSrxTiO3 that corresponds to our model in the range
�0	n	1�.

We next turn to the 1 up, 2 down �1�0 case �squares and
diamonds, blue online�. At n=1 we see again that the crystal-
field splitting is large enough to fully polarize the Mott insu-

lator �0, 1/4, 1/4 orbital occupancy�. In this case, at weak
crystal-field splitting, the occupancy of the majority orbitals
increases smoothly with doping �almost all dopants go into
the initially empty band, leading to a jump at the metal-
insulator transition�. At larger chemical potential, there is an
abrupt transition to the n=2 Mott phase with 0, 1/2, 1/2
orbital occupancy. On further doping to the range 2	n	3
we observe phenomena analogous to those found on doping
the n=1 1 down, 2 up state: doping leads to a charge transfer
between orbitals which reduces the degree of orbital dispro-
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FIG. 7. �Color online� � dependence of the orbital occupancy
per spin n���� for U / t=12 and J / t=1 at �t=50 and in the presence
of a cubic-tetragonal crystal field �1= �0.25t �top� and �1= � t
�bottom�. The crystal field splits the threefold degenerate d level
into a doublet and a singlet, with the doublet lying higher or lower
according to the sign of �1. The singlet orbital is labeled as “orbital
1” and is denoted by open circles �red� for �1	0 or diamonds
�blue� for �1�0; the doublet orbitals are labeled as orbitals 2 and 3
and are denoted by stars �red� for �	0 or squares �blue� for
��0. Magnetic ordering was suppressed by averaging the Green’s
function over spin and additional ordering of orbitals 2 and 3 was
suppressed by averaging the Green’s functions in orbitals 2 and 3.
The chemical-potential range runs from the n=1 Mott phase
��	6t� to the n=3 Mott phase ��	20t�. Insulating phases are
visible as plateaus in all three densities and occur only at integer
total density. Orbitally selective Mott phases are visible as plateaus
in one density with the other�s� varying with �.
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portionation. At the larger crystal-field splitting the behavior
is different. Between n=1 and n=2 the minority orbital re-
mains empty; the crystal-field splitting is large enough to
make the material effectively a two-orbital band insulator.
Between n=2 and n=3 the state is an orbitally selective Mott
state, with the minority band partially occupied and coupled
to the spin 1 formed by the majority states. This physics has
also been discussed very recently in Ref. 12.

VI. CRYSTAL FIELDS IN THE METALLIC STATE

This section considers the effect of crystal-field splitting
for weaker interactions U	Uc2 where at �a=0 the system is
in the metallic phase. In Fig. 8 we plot the variation in orbital
occupancies as the crystal field is varied at fixed � corre-
sponding to n=2, as was done in Fig. 6 for a stronger U. The
figure shows results obtained by averaging the Green’s func-
tions of orbitals 2 and 3. For U=8t considered here, the
�1=0 metallic phase is characterized by an orbital suscepti-
bility �orb=−

d�n1−�n2+n3�/2�
d�1

with some J dependence but a typi-
cal magnitude of 	0.2–0.3 / t. As �1 is increased the disfa-
vored orbital 1 empties out and the occupancy of the favored
orbitals increases. At J=0 �right-hand side of the figure� we
see that in the 1 down, 2 up case, an apparently first-order
transition to a �1,0,0� insulating state occurs as the magnitude
of the crystal-field splitting increases, whereas in the 1 up, 2
down case a transition occurs to a Mott state with two elec-
trons in two orbitals. At J=0 all possible ways of arranging
the two electrons among the two orbitals are degenerate; the
degeneracy would be lifted by intersite effects.

In the more physically relevant J�0 case �left-hand side
of figure� a crystal-field splitting of the 1 down, 2 up type

leads to an orbitally selective Mott state. On the other hand,
increasing the magnitude of a crystal-field splitting of the 1
up, 2 down type induces a transition to a �0,1/2,1/2� insulat-
ing state. Again, the computations presented here are for an
orbitally disordered Mott state. In particular the orbital selec-
tive Mott phase would be susceptible to orbital ordering.

Figure 9 shows the energetics of the orbitally selective
Mott transition at U=8t and J
1.2t with density n=2. The
chemical potential has been adjusted to keep the occupancy
fixed. We see that in the metallic phase the energy is hardly
affected, while in the orbitally selective and insulating
phases the energy drops linearly with �, with a coefficient
given by the occupancy of the filled orbital. These energetics
are important because in several materials �including, for ex-
ample, Ca2RuO4� the metal insulator transition is of the or-
bitally selective type and is accompanied by a lattice distor-
tion which acts to increase the crystal-field splitting.

VII. COMPARISON TO EXPERIMENT

In this section we place a few relevant materials on our
calculated phase diagram and discuss implications of our re-
sults. We begin with SrVO3, a pseudocubic material charac-
terized by one electron in the t2g shell, a bandwidth corre-
sponding to t
0.7 eV, U
5 eV
7t, and J
U /7.6 SrVO3
is a good metal, with a modest mass enhancement; it is not
believed to be close to the Mott transition. This behavior is
consistent with our phase diagram: the value of J /U is simi-
lar to that used to construct the lower panel of Fig. 2 and
U=7t is quite far from the n=1 Mott lobe. The metallic
behavior is seen to be a consequence of the nonvanishing
value of the Hund coupling J. Without J, the material would
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FIG. 8. �Color online� Orbital filling as a function of crystal-
field splitting computed for the two-electron state with U / t=8 and
�t=50 and indicated values of J / t. In order to display all of the
curves on the same figure the crystal-field coordinate is chosen to
be �−�1. The red lines with circles correspond to the occupancy of
orbital 1 and the blue lines with stars correspond to the occupancy
of orbitals 2 and 3. While a metal-insulator transition is evident
in the curves for J / t=0 and those for J / t=1,�1�0, the
J / t=1,�1	0 curves exhibit a transition to an orbital-selective Mott
state �band 1 is insulating and bands 2 and 3 are metallic�.
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be very close to the Mott transition. In the related material
LaVO3 �Refs. 25–27� the change Sr→La implies that the d
shell filing changes from 1 to 2. The material also exhibits a
moderate orthorhombic distortion away from cubic symme-
try, of the 1 down, 2 up type. Using the U values obtained
from the singly occupied system we find that the materials
would be metallic �albeit in the spin-frozen phase discussed
in Ref. 28�.

We next consider LaTiO3, in which the bandwidth is such
that our parameter t	0.5–0.7 eV and U	4–5 eV
	5–10t with J	U /6. Here, examination of the phase dia-
gram reveals that within the single-site dynamical mean-field
theory, and in the absence of orbital ordering, the material is
not predicted to be a Mott insulator. However, it is now
known that in the material a substantial local trigonal distor-
tion occurs.29,30 Our results lend support to the idea, ad-
vanced in previous papers,6,31 that the trigonal distortion is
essential to the insulating behavior. The trigonal distortion,
by lowering one orbital, will effectively convert the problem
into a one-orbital model. Figure 4 shows that the amplitude
of the distortion must be large, providing a level splitting on
the order of one quarter of the bandwidth. One difficulty with
this interpretation is that the insulating gap in LaTiO3 is only
about 0.2 eV, whereas in a single-orbital Mott insulator the
gap is on the order of U−2t	2 eV. The small value of the
gap suggests that effects beyond the scope of the single-site
dynamical mean-field theory are important in this material.

We now turn to the Sr/Ca ruthenates. These are materials
with two holes in the t2g shell; after a particle-hole transfor-
mation they map on to the two-electron case of the model
studied here. The 113 materials �Sr1−xCax�RuO3
crystallize in an orthorhombic structure slightly distorted
from the cubic perovskite form. Both the Sr and Ca materials
are metallic, with the Sr being ferromagnetic below
Tc
150 K. The t2g bands have a bandwidth of approxi-
mately 2.5 eV �Ref. 32� corresponding to a t parameter of
about 0.6 eV in the notations of the present paper. The U and
J values are not established for these compounds but must be
substantially less than U=10t	6 eV needed to drive a Mott
transition.

The ruthenates also exist in a layered form �Sr /Ca�2RuO4.
Here the electron counting is the same as in the 113 ruthen-
ates but the tetragonal crystal structure means that two of the
orbitals have an effectively one-dimensional dispersion and
the remaining one has a two-dimensional dispersion. Thus, a
substantial anisotropy is already present in the band structure
even in the absence of explicit ligand field splitting. At room
temperature all members of the Sr/Ca series are metallic, but
as temperature is reduced the Ca material undergoes a tran-
sition to an insulating phase, accompanied by a lattice
distortion33 while Sr2RuO4 remains metallic to lowest tem-
peratures. In a recent letter34 Liebsch and Ishida �in agree-
ment with the prior proposals of Jung et al.�33 argued that the
insulating phase should be understood as a consequence of a
1 up, 2 down crystal field. Figure 5 shows that a moderate
crystal-field splitting of the 1 up, 2 down type can substan-
tially decrease the critical U required to drive a metal-
insulator transition at n=2. In this interpretation, the effec-
tive crystal field is small in Sr2RuO4 but increases with Ca
doping, driving a metal-insulator transition analogous to that

shown on the left-hand side of Fig. 8. The argument in favor
of a small effective crystal-field splitting in Sr2RuO4 is the
near equality of the occupancies of the dxy, dxz, and dyz or-
bitals. A previous weak coupling Hartree-Fock analysis by
one of us and Okamoto35 found that at small U a nonvanish-
ing J stabilized the systems against crystal-field distortions.
On the basis of this calculation it was argued that the near
degeneracy of orbital occupancies in Sr2RuO4 despite the
highly anisotropic crystal structure was an interaction effect.
Figure 8 and the results of Ref. 34 suggest that the results of
Ref. 35 do not survive beyond the weak-coupling limit, so
that the near equality of orbital occupations in Sr2RuO4 must
be regarded as accidental, with the asymmetry of the band-
widths and of the crystal-field levels compensating one an-
other to leave a small effective splitting. If the near vanishing
of effective crystal-field splitting in Sr2RuO4 is accidental
then it is very reasonable that the changes induced by Ca
substitution can move the system away from the accidental
degeneracy.

An issue with this interpretation is that at higher tempera-
tures �T�350 K� Ca2RuO4 is metallic, while the standard
single-site dynamical mean-field theory predicts that the ma-
terial should become more insulating as the temperature is
raised. We suggest, following Jung et al., that the
temperature-driven first-order transition can be understood in
terms of a temperature-driven lattice distortion. Indeed the
energy diagram �Fig. 9� in combination with a reasonable
free energy for lattice distortions, implies a first-order tran-
sition. From this figure we see that the energy gain per or-
bital �E from a 1 up, 2 down distortion produced by a crys-
tal field � is approximately �E=�−�0 for ���0 with �0 a
fraction of the bandwidth parameter t. Let us suppose that a
lattice distortion of the type observed by Ref. 33 produces a
crystal-field splitting � and that the free-energy cost of this

distortion is �F=�2 /2�̄�T� with �̄�T� a temperature-
dependent free-energy scale which increases as T is de-
creased, representing the entropy of thermal phonon fluctua-
tions, which favor the undistorted state. The total free energy
is then

F = − �� − �0���� − �0� +
1

2

�2

�̄�T�
. �10�

We see that for �̄�T�	�0, F is minimized at �=0 but for

�̄��0 the free energy is minimized at a value ���0 im-

plying a Mott state, and that as �̄ continues to increase the
magnitude of � and therefore the size of the Mott gap further
increases. Additional study of this issue using the realistic
band structure and a better model of the phonon energetics
would be desirable.

Another material to which the considerations of this paper
should apply is doped C60. For this material, quantum chemi-
cal calculations suggest U	1.5 eV and J
0.1 eV �Refs.
36 and 37� and a bandwidth of about 0.6 eV,38 corresponding
in the language of this paper to t	0.15 eV, so U	10t and
J	U /15. Experimentally, A1C60 and A2C60 are insulators,
while A3C60 is metallic and superconducting. The small J
limit of the theory is roughly consistent with the trend in
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behavior, with the interactions being strong enough to place
the n=1 compound firmly within the Mott phase while the
location of the n=2,3 materials is uncertain. The calcula-
tions presented here would suggest that A2C60 and A3C60
should be approximately equally likely to be insulating.
From this point of view, understanding the metallic nature of
A3C60 and insulating nature of A2C60 is an important open
problem.

VIII. SUMMARY

In this paper we have used continuous-time quantum
Monte Carlo methods to produce a comprehensive picture of
the metal-insulator phase diagram and response to crystal
fields of a three-orbital model which contains the essential
physics of the fullerides and the perovskite-based titanates,
vanadates, and ruthenates. We have documented the strong
effect of the Hund coupling on the location of the Mott tran-

sition and on the response to crystal fields and have placed a
number of experimentally interesting materials on the phase
diagram. The methods and results presented here provide a
basis for detailed material-specific calculations based on re-
alistic Hamiltonians. Important future directions for research
include the investigation of the stability of the phases we
have found against orbital and magnetic orderings, the effect
of the band structure, and the coupling of the orbitally selec-
tive transitions we have found to the lattice. Work in this
direction is in progress.
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